A Congruence for the Number of Alternating Permutations

نویسندگان

چکیده

We present a new proof of result Knuth and Buckholtz concerning the period the number alternating congruences modulo an odd prime. The is based on properties special functions, specifically polylogarithm, Dirichlet eta beta Stirling numbers second kind.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An explicit formula for the number of permutations with a given number of alternating runs

Article history: Received 18 November 2011 Available online 26 May 2012

متن کامل

Enumeration of permutations by number of alternating descents

In this paper we present an explicit formula for the number of permutations with a given number of alternating descents. As an application, we obtain an interlacing property for the zeros of alternating Eulerian polynomials.

متن کامل

A Survey of Alternating Permutations

A permutation a1a2 · · · an of 1, 2, . . . , n is alternating if a1 > a2 < a3 > a4 < · · · . We survey some aspects of the theory of alternating permutations, beginning with the famous result of André that if En is the number of alternating permutations of 1, 2, . . . , n, then P n≥0 En x n n! = sec x + tan x. Topics include refinements and q-analogues of En, various occurrences of En in mathem...

متن کامل

investigating the feasibility of a proposed model for geometric design of deployable arch structures

deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...

Alternating, Pattern-Avoiding Permutations

We study the problem of counting alternating permutations avoiding collections of permutation patterns including 132. We construct a bijection between the set Sn(132) of 132-avoiding permutations and the set A2n+1(132) of alternating, 132avoiding permutations. For every set p1, . . . , pk of patterns and certain related patterns q1, . . . , qk, our bijection restricts to a bijection between Sn(...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Missouri Journal of Mathematical Sciences

سال: 2021

ISSN: ['0899-6180', '1085-2581']

DOI: https://doi.org/10.35834/2020/3301099